skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biswal, Sibani L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetic colloids can be driven with time-varying fields to form clusters and voids that re-organize over vastly different timescales. However, the driving force behind these nonequilibrium dynamics is not well-understood. Here, we introduce a topological framework that predicts protected edge flows despite strong thermal motion. Notably, these edge flows produce shear stress that creates global rotation of clusters but not of voids. We verify this theory experimentally using micrometer-sized superparamagnetic colloids to demonstrate these emergent physical predictions and show how they drive system reorganization differentially at long timescales. Our results elucidate fundamental principles that shape and control nonequilibrium colloidal aggregates. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026